- Gọi số đó là `a (a in NN, a>5)`
- Ta có : a chia 7 dư 5 `=> a=7k+5 (k in NN)`
- Ta lại có : a chia 13 dư 4 `=> a-4 vdots 13`
`=> 7k+5-4 vdots 13`
`=> 7k+1vdots 13`
`=> 7k+1+13 vdots 13`
`=> 7k+14 vdots 13`
`=> 7(k+2) vdots 13`
mà `(7;13)=1`
`=> k+2 vdots 13`
`=> k+2=13m (m in NN)`
`=> k=13m-2`
- Thay `k=13m-2` vào biểu thức `a=7k+5` ta có :
`a=7.(13m-2)+5`
`-> a=91m-14+5`
`-> a=91m-9`
`-> a-82=91m-9-82`
`-> a-82=91m-91`
`-> a-82 vdots 91`
`-> a-82=91n (n in NN)`
`-> a=91n+82`
`->` a chia 91 dư 82
- Vậy a chia 91 dư 82