Gọi \(x\left(m\right)\) là chiều rộng của sân lúc đầu \(\left(x>0\right)\)
Chiều dài của sân lúc đầu là: \(\dfrac{3}{2}x\left(m\right)\)
Diện tích sân lúc đầu là: \(x.\dfrac{3}{2}x=\dfrac{3}{2}x^2\left(m ^2\right)\)
Chiều dài sân lúc sau là: \(\dfrac{3}{2}x+2\left(m\right)\)
Chiều rộng sân lúc sau là: \(x+2\left(m\right)\)
Diện tích sân lúc sau là: \(\left(\dfrac{3}{2}x+2\right)\left(x+2\right)\left(m^2\right)\)
Vì diện tích sân lúc sau tăng thêm 64m2 nên ta có phương trình:
\(\left(\dfrac{3}{2}x+2\right)\left(x+2\right)-\dfrac{3}{2}x^2=64\\ \Leftrightarrow\dfrac{3}{2}x^2+3x+2x+4-\dfrac{3}{2}x^2=64\\ \Leftrightarrow5x=60\\ \Leftrightarrow x=12\left(tm\right)\)
Vậy diện tích dân lúc đầu là: \(\dfrac{3}{2}.12^2=216m^2\)
Gọi chiều dài ban đầu của sân là x(m)(Điều kiện: x>0)
Chiều rộng ban đầu của sân là:
\(\dfrac{2}{3}x\)(m)
Diện tích ban đầu của sân là:
\(\dfrac{2}{3}x\cdot x=\dfrac{2}{3}x^2\left(m^2\right)\)
Vì khi mở rộng sân thêm chiều dài 2m và thêm chiều rộng 2m thì diện tích sân tăng thêm 64m2 nên ta có phương trình:
\(\left(x+2\right)\left(\dfrac{2}{3}x+2\right)=\dfrac{2}{3}x^2+64\)
\(\Leftrightarrow\dfrac{2}{3}x^2+2x+\dfrac{4}{3}x+4-\dfrac{2}{3}x^2=64\)
\(\Leftrightarrow\dfrac{10}{3}x=60\)
hay x=18(thỏa ĐK)
Chiều rộng của sân là:
\(\dfrac{2}{3}\cdot18=12\left(m\right)\)
Diện tích ban đầu của sân là:
\(12\cdot18=216\left(m^2\right)\)