\(v_{tb}=\dfrac{S}{t_1+t_2}=\dfrac{S}{\dfrac{S_1}{v_1}+\dfrac{S_2}{v_2}}=\dfrac{S}{\dfrac{S}{2v_1}+\dfrac{S}{2v_2}}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{2v_2}}=\dfrac{1}{\dfrac{v_2+v_1}{2v_1v_2}}=\dfrac{2v_1v_2}{v_1+v_2}\)
\(v=\dfrac{v_1+v_2}{2}\)
\(v_{tb}-v=\dfrac{2v_1v_2}{v_1+v_2}-\dfrac{v_1+v_2}{2}=\dfrac{4v_1v_2-v_1^2-2v_1v_2-v_2^2}{2\left(v_1+v_2\right)}=\dfrac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}< 0\)
\(\Rightarrow v_{tb}< v\)