Kẻ đường cao AH
\(\Rightarrow\widehat{BAH}=\widehat{ACB}\) (cùng phụ góc B) \(\Rightarrow\widehat{BAH}=a\)
\(\left(sina+cosa\right)^2=sin^2a+cos^2a+2sina.cosa\)
\(=1+2sina.cosa=1+2.\frac{BH}{AB}.\frac{AH}{AB}=1+\frac{2AH.BH}{AB^2}=1+\frac{2AH.BH}{BH.BC}=1+\frac{2AH}{BC}\)
\(1+sinb=1+\frac{AH}{AM}=1+\frac{AH}{\frac{BC}{2}}=1+\frac{2AH}{BC}\)
\(\Rightarrow\left(sina+cosa\right)^2=1+sinb\)