a: VP=sinx*sinpi/4+cosx*cospi/4
\(=sinx\cdot\dfrac{\sqrt{2}}{2}+cosx\cdot\dfrac{\sqrt{2}}{2}\)=VT
b: VP=cosx*cospi/6-sinx*sinpi/6
=cos(x+pi/6)
a: VP=sinx*sinpi/4+cosx*cospi/4
\(=sinx\cdot\dfrac{\sqrt{2}}{2}+cosx\cdot\dfrac{\sqrt{2}}{2}\)=VT
b: VP=cosx*cospi/6-sinx*sinpi/6
=cos(x+pi/6)
III. Phương trình bậc nhất đối với sinx và cosx:
*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:
(2.1)
1) \(2sinx-2cosx=\sqrt{2}\)
2) \(cosx-\sqrt{3}sinx=1\)
3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)
4) \(cosx-sinx=1\)
5) \(2cosx+2sinx=\sqrt{6}\)
6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)
7) \(3sinx-2cosx=2\)
(2.3)
1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)
2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)
3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)
4) \(sin2x+cos2x=\sqrt{2}sin3x\)
5) \(sinx=\sqrt{2}sin5x-cosx\)
6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
8) \(2sin^2x+\sqrt{3}sin2x=3\)
9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\)
(2.3)
1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)
2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)
3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)
4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)
5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)
(2.4)
a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)
b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)
(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:
a) \(mcosx-\left(m+1\right)sinx=m\)
b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)
(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:
a) \(y=3sinx-4cosx+5\)
b) \(y=cos2x+sin2x-1\)
Giải phương trình lượng giác bậc nhất đối với sinx và cosx:
\(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
giải các pt sau:
a) cosx(1-cos2x) - sin^2x = 0
b) sin3x + cos2x = 1 + 2sinxcos3x
c) ( cosx+1)(sinx - cosx + 3) = sin^2x
d) (1+sinx)(cosx-sinx) = cos^2x
giải pt : sinx + \(\sqrt{3}\) cosx + \(\sqrt{sinx+\sqrt{3}cosx}\) = 2
Giải pt: sinx - cosx ( 3tanx + 2 ) = 0
giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)
1/ Tìm m để pt có nghiệm
|sinx+cosx| - sin2x=m
2/ Cho pt: 2cos2x+ sin2x.cosx + sinx.cos2x=m.(sinx + cosx)
A. Giải pt khi m=2
B. Tìm m để pt có nghiệm x thuộc [0; pi/2]
Giải pt :
\(sin^3x=sinx+cosx\)
Giải pt: a)sin^3x+cos^3x+1=3sinxcosxb) (1+cosx)×(1+sinx)=2
giải pt sau :
\(\sqrt{3}sin4x-cos4x=sinx-\sqrt{3}cosx\)