\(M + N = (3xyz – 3x^2 + 5xy – 1) + (5x^2 + xyz – 5xy + 3 – y)\)
\(= 3xyz – 3x^2 + 5xy – 1 + 5x^2 + xyz – 5xy + 3 – y\)
\(= (3xyz + xyz)+( –3x^2 + 5x^2) + (5xy – 5xy) – y + ( – 1+3)\)
\(= 4xyz + 2x^2 – y + 2\)
\(M – N = (3xyz – 3x^2 + 5xy – 1) – (5x^2 + xyz – 5xy + 3 – y)\)
\(= 3xyz – 3x^2 + 5xy – 1 – 5x^2 – xyz + 5xy – 3 + y\)
\(= (– 3x^2 – 5x^2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)\)
\(= –8x^2 + 2xyz + 10xy + y – 4.\)
\(N – M = (5x^2 + xyz – 5xy + 3 – y) – (3xyz – 3x^2 + 5xy – 1)\)
\(= 5x^2 + xyz – 5xy + 3 – y – 3xyz + 3x^2 – 5xy +1\)
\(= (5x^2 + 3x^2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y\)
\(= 8x^2 – 2xyz – 10xy – y + 4.\)
M+N=(3xyz-3x3+5xy-1)+(5x2+xyz-5xy+3-y)
=3xyz-3x3+5xy-1+5x2+xyz-5xy+3-y
=(3xyz+xyz)+(-3x3)+(5xy-5xy)+(-1+3)+5x2-y
= 4xyz+(-3x3)+2+5x2-y
M-N=(3xyz-3x3+5xy-1)-(5x2+xyz-5xy+3-y)
=3xyz-3x3+5xy-1-5x2-xyz+5xy-3+y
=(3xyz-xyz)+(-3x3)+(5xy+5xy)+(-1-3)-5x2+y
= 2xyz+(-3x3)+10xy+(-4)-5x2+y