Bài 1: Giới hạn của dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chi Nguyen

\(lim\sqrt[3]{n^2+n^3}+n.\) B))lim\(\frac{n^2+2\sqrt{n}+3}{2n^2+n-\sqrt{n}}\)

C))\(\frac{2n\sqrt{n}+3}{n^2+n+1}\) Đ)) lim \(\frac{\left(3+\sqrt{n}\right)\left(2n\sqrt{n}\right)}{\left(n+1\right)\left(n+2\right)}\)

Nguyễn Việt Lâm
27 tháng 4 2020 lúc 14:10

\(a=\lim\limits n\left(\sqrt[3]{\frac{1}{n}+1}+1\right)=+\infty.2=+\infty\)

\(b=\lim\limits\frac{n^2+2\sqrt{n}+3}{2n^2+n-\sqrt{n}}=\lim\limits\frac{1+\frac{2}{n\sqrt{n}}+\frac{3}{n^2}}{2+\frac{1}{n}-\frac{1}{n\sqrt{n}}}=\frac{1}{2}\)

\(c=\lim\limits\frac{2n\sqrt{n}+3}{n^2+n+1}=\frac{\frac{2}{\sqrt{n}}+\frac{3}{n^2}}{1+\frac{1}{n}+\frac{1}{n^2}}=\frac{0}{1}=0\)

\(d=\lim\limits\frac{2n^2+6n\sqrt{n}}{n^2+3n+2}=\lim\limits\frac{2+\frac{6}{\sqrt{n}}}{1+\frac{3}{n}+\frac{2}{n^2}}=\frac{2}{1}=2\)


Các câu hỏi tương tự
James James
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Đỗ Thị Thanh Huyền
Xem chi tiết
nguyễn linh chi
Xem chi tiết
Kuramajiva
Xem chi tiết
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Khang Minh
Xem chi tiết
Julian Edward
Xem chi tiết