\(\lim\limits\frac{1}{0}\)
Cho \(0< \left|a\right|,\left|b\right|< 1\). Khi đó \(\lim\limits\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\)=
\(\lim\limits\left(\frac{1}{2.4}+\frac{1}{5.7}+\frac{1}{8.10}+...+\frac{1}{\left(3n-1\right)\left(3n+1\right)}\right)\)
\(\lim\limits\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{n^2}\right)\)
Tính \(\lim\limits\left[\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right]\)
\(\lim\limits\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+n}\right)\)
\(\lim\limits\frac{\sqrt{n}+\sqrt[3]{n}+\sqrt[4]{n}}{\sqrt{2n+1}}\)
Tính
\(\lim\limits x\sqrt{\frac{1}{2x^2+x-2}}\)
Tìm các giới hạn sau:
a) \(\lim\limits\left(\sqrt{2n^2+3}-\sqrt{n^2+1}\right)\)
b) \(\lim\limits\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)