\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x^2+2x-5x^2}{\sqrt{5x^2+2x}-x\sqrt{5}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2x}{x}}{-\sqrt{\dfrac{5x^2}{x^2}+\dfrac{2x}{x^2}}-\dfrac{x\sqrt{5}}{x}}=\dfrac{2}{-2\sqrt{5}}=-\dfrac{\sqrt{5}}{5}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x^2+2x-5x^2}{\sqrt{5x^2+2x}-x\sqrt{5}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2x}{x}}{-\sqrt{\dfrac{5x^2}{x^2}+\dfrac{2x}{x^2}}-\dfrac{x\sqrt{5}}{x}}=\dfrac{2}{-2\sqrt{5}}=-\dfrac{\sqrt{5}}{5}\)
a) lim \(\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+2}}\)
x-> +∞
b) lim \(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> ∞
a) lim \(\dfrac{3x^4-2x^5}{5x^4+x+4}\)
x-> -∞
b) lim \(\dfrac{x-1}{\sqrt{x^2-1}}\)
x-> +∞
a) lim ( \(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}\)
x-> +∞
b) lim \(\dfrac{\sqrt{4x+1}-3}{x^2-4}\)
x-> 2
c) lim \(\dfrac{\sqrt{2x+5}-1}{x^2-4}\)
x-> -2
Tìm giơi han:
a) lim (x-> \(+\infty\)) \(\dfrac{\sqrt{x^2+1}+x}{5-2x}\)
b) lim (x->4) \(\left(\dfrac{\sqrt{15x+4}-\sqrt{x-3}-3}{-x+4}\right)\)
sorry, e k bt nhâp lim ..
a) lim \(\dfrac{x\sqrt{x^2+1}-2x+1}{^3\sqrt{2x^3-2}+1}\)
x-> -∞
b) lim \(\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
x-> -∞
c) lim \(\dfrac{\sqrt{4x^2+x}+^3\sqrt{8x^3+x-1}}{^4\sqrt{x^4+3}}\)
x-> +∞
a) lim ( x2+x-1)
x-> -∞
b) lim ( \(\sqrt{x^2+x+1}-2\sqrt{x^2-x}+x\))
x-> +∞
c) lim x\(\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\)
x-> +∞
biết \(\lim\limits_{x\rightarrow+\infty}\left(x+1\right)\sqrt{\dfrac{2x+1}{5x^3+x+2}}=-\sqrt{\dfrac{a}{b}}\) . tìm a, b biết a, b là phan so toi gian; a,b>0
a) lim (2x+ \(\sqrt{4x^2-x+1}\))
x-> -∞
b) lim x\(\left(\sqrt{4x^2+1}-x\right)\)
x-> -∞
Tìm các giới hạn sau :
A=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
B=\(\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}\)
C=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}-1}{x}\)
D=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
E=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)
Giup mình vớiii