Bạn lần sau chú ý ghi đầy đủ đề để được hỗ trợ tốt hơn.
$(x+y)^2+\frac{2}{3}(x+y)=(x+y)[(x+y)+\frac{2}{3}]$
Áp dụng BĐT Am-Gm và Bunhiacopxky:
$x+y\geq 2\sqrt{xy}$
$(x+y)+\frac{2}{3}\geq 2\sqrt{\frac{2}{3}(x+y)}\geq 2\sqrt{\frac{2}{3}.\frac{(\sqrt{x}+\sqrt{y})^2}{2}}=\frac{2\sqrt{3}}{3}(\sqrt{x}+\sqrt{y})$
Do đó:
$(x+y)^2+\frac{2}{3}(x+y)=(x+y)[(x+y)+\frac{2}{3}]\geq \frac{4\sqrt{3}}{3}\sqrt{xy}(\sqrt{x}+\sqrt{y})=\frac{4\sqrt{3}}{3}(x\sqrt{y}+y\sqrt{x})$
Ta có đpcm.