Tìm tập xác định của các hàm số sau:
1. y = \(\frac{\sqrt{x-1}+\sqrt{4-x^2}}{\left(x-2\right)\left(x+3\right)}\)
2. y = \(\frac{\sqrt{2-x}}{x^2-5x+4}\)
3. y = \(-\frac{\sqrt{2-3x}}{\sqrt{1+2x}}\)
\(\begin{cases}x\sqrt{6-y}+\sqrt{y\left(6-x^2\right)}=6\\x^2-3x+2=2\sqrt{y-2}\end{cases}\) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2-x+\sqrt{x}=xy+\sqrt{y+1}\\2x^3+1=x\sqrt{4x^2+5y^2-5}+9y\end{matrix}\right.\)
A=\(\left[\dfrac{x^2+2}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right].\left(1-\dfrac{1}{x}-\dfrac{x}{x^2}\right)\)
a ) Tìm điều kiện xác định
b ) Rút gọn A
c) Tìm x để A=2
d) Tính A khi x =\(\sqrt{\sqrt{4-2\sqrt{3}}}\)
Tìm tập xác định của hàm số sau:
1. y = \(\frac{\sqrt{3x+4}}{x-3}\)
2. y = \(\frac{2x-1}{x^2-5x+6}\)
3. y = \(\frac{\sqrt{4-x^2}}{\left(x-2\right)\left(x-3\right)}\)
4. y = \(\frac{\sqrt{4-x}}{\sqrt{2x-10}}\)
Giúp mình giải bài này nha! ⚡KN⚡ Cảm Ơn Mọi Người!❤
\(\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
a, Rút gọn A
b, Tìm x để A< 0
c, Tìm x nguyên để A có giá trị nguyên
câu 1: cho \(A=\left\{x\in R:x+2\ge0\right\},B=\left\{x\in R:5-x\ge0\right\}.tìmA\cap B\)
câu 2: A=\(\left[-4;7\right]\) và B=\(\left(-\infty;-2\right)\cup\left(3;-\infty\right)\) tìm A\(\cap\)B
Cho \(A=\left\{x\in R|\left(x+1\right)^2+\left(x-1\right)^2=10\right\};B=\left\{x\in R|\left(x+1\right)^4+\left(x-1\right)^4=82\right\}\)Tìm tập X sao cho A\(\cup\)X=B.
CÂU 1: giải phương trình sau:
\(x^2=-\sqrt{x+2019}+2019\)
CÂU 2: chứng minh: \(C_E\left(A\cup B\right)=\left(C_EA\right)\cap\left(C_EB\right)\) . trong đó A, B là con của E
đặc biệt viết lại là: \(E\backslash\left(A\cup B\right)=\left(E\backslash A\right)\cap\left(E\B\right)\)
* chú ý: \(E\in\left(A\cap B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
\(x\in\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
m.n giúp mk bài này ạ. thank m.n