\(\left|x+1\right|^2+\left|x-1\right|^2=x^2+2x+1+x^2-2x+1
\) =\(2x^2+2=2\)
=\(2\left(x^2+1\right)\)=2
=> \(x^2+1=1\)
=> \(x^2=0\)
Vậy \(\delta=\left\{0\right\}\)
\(\left|x+1\right|^2+\left|x-1\right|^2=x^2+2x+1+x^2-2x+1
\) =\(2x^2+2=2\)
=\(2\left(x^2+1\right)\)=2
=> \(x^2+1=1\)
=> \(x^2=0\)
Vậy \(\delta=\left\{0\right\}\)
Giải và biện luận phương trình sau:
\(\dfrac{1}{\left(x+a\right)^2-1}+\dfrac{1}{\left(x+1\right)^2-a^2}+\dfrac{1}{x^2-\left(a+1\right)^2}+\dfrac{1}{x^2-\left(a-1\right)^2}\)
Giải phương trình \(\left(x+1\right)^2\left(1+\dfrac{2}{x}\right)^2+\left(1+\dfrac{1}{x}\right)^2=8\left(1+\dfrac{2}{x}\right)^2\)
Giải phương trình sau \(\left(x^2+11x12\right)\left(x^2+9x+20\right)\left(x^2+13x+42\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
Giải phương trình :
\(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x^2-4}{x^2-1}\right)=0\)
GIẢI PHƯƠNG TRÌNH SAU
A) \(\frac{X^2+2X+1}{X^2+2X+2}+\frac{X^2+2X+2}{X^2+2X+3}=\frac{7}{6}\)
B) \(\frac{\left(X^2-3X-4\right)^4}{\left(X-3\right)^5\left(X+2\right)^3}+\frac{\left(X^2+4X+3\right)^6}{\left(X-3\right)^3\left(X+2\right)^5}=0\)
giải phương trình sau :
a) \(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
b) \(3x^4-13x^3+16x^2-13x+3=0\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
Giải phương trình sau : 20\(\left(\frac{x-2}{x+1}\right)^2\)-5\(\left(\frac{x+2}{x-1}\right)^2\)+48\(\frac{x^2-4}{x^2-1}\)=0
Giải phương trình:
a)\(\dfrac{x-49}{50}\)+\(\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
Giải bất phương trình: \(\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x-1\right)}>0\)