Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Ngà

\(\left\{{}\begin{matrix}x^2+xy-2y^2+3y-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)

Unruly Kid
8 tháng 3 2019 lúc 11:53

\(\Rightarrow \sqrt{y-1}-\sqrt{x}+(y-1)^{2}-x^{2}+y(y-x-1)=0\)

\(\Leftrightarrow (y-x-1)\left ( \underset{>0,x\geq 0 \& 6\geq y\geq 1}{\underbrace{\frac{1}{\sqrt{y-1}+x}+2y+x-1}} \right )=0\Rightarrow y-x-1=0\Leftrightarrow x=y-1\; \;\)\(3\sqrt{6-y}+3\sqrt{5y-9}=2y+5\;\)

\(\Leftrightarrow (8-y)-3\sqrt{6-y}+3(y-1-\sqrt{5y-9})=0\)

\(\Leftrightarrow \frac{y^{2}-7y+10}{(8-y)+3\sqrt{6-y}}+3.\frac{y^{2}-7y+10}{y-1+\sqrt{5y-9}}=0\)

\(\Leftrightarrow (y^{2}-7y+10)(\underset{>0,\forall \frac{9}{5}\leq y\leq 6}{\underbrace{{\frac{1}{(8-y)+3\sqrt{6-y}}+\frac{3}{y-1+\sqrt{5y-9}}}}})=0\)


Các câu hỏi tương tự
Kim Trí Ngân
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Phạm Duy Phát
Xem chi tiết
bach nhac lam
Xem chi tiết
Wang Soo Yi
Xem chi tiết
Thùy Minh
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
Mỹ Lệ
Xem chi tiết
poppy Trang
Xem chi tiết