\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2010}{2011}\)
\(=\frac{1}{2011}\)
\(\left(1-\begin{matrix}1\\2\end{matrix}\right)\) \(\left(\begin{matrix}1&-\begin{matrix}1\\3\end{matrix}\end{matrix}\right)\) \(\left(1-\begin{matrix}1\\4\end{matrix}\right)\) ... \(\left(1-\begin{matrix}1\\2011\end{matrix}\right)\)
= \(\frac{1}{2}\) x \(\frac{2}{3}\) x \(\frac{3}{4}\) x ... x \(\frac{2010}{2011}\)
= \(\frac{1.2.3....2010}{2.3.4....2011}\)
= \(\frac{1}{2011}\)