Bài 6:
a. Sai. Vì $x^2=\frac{1}{3}\Leftrightarrow x=\pm \sqrt{\frac{1}{3}}$ là số vô tỉ.
Mệnh đề phủ định: $\forall x\in\mathbb{Q}, 9x^2-3\neq 0$
b. Sai. Cho $n=0$ thấy $n^2+1=1$ không chia hết cho $8$
Mệnh đề phủ định: $\exists x\in\mathbb{N}| n^2+1\not\vdots 8$
c. Sai. Cho $x=1$ thấy sai.
Phủ định: \(\exists c\in\mathbb{R}| (x-1)^2=x-1\)
d. Sai, cho $n=0$ thấy sai.
Phủ định: $\exists n\in\mathbb{N}| n^2\leq n$
Bài 4:
a.
$x^2-5x+4=0$
$\Leftrightarrow (x-1)(x-4)=0$
$\Leftrightarrow x=1$ hoặc $x=4$
b.
$x^2-5x+6=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x=2$ hoặc $x=3$
c.
$x^2-3x>0$
$\Leftrightarrow x(x-3)>0$
$\Leftrightarrow x>3$ hoặc $x< 0$
d. ĐK $x\geq 0$
$\sqrt{x}=x$
$\Leftrightarrow \sqrt{x}(\sqrt{x}-1)=0$
$\Leftrightarrow x=0$ hoặc $x=1$
e.
$2x+3\leq 7$
$\Leftrightarrow 2x\leq 4$
$\Leftrightarrow x\leq 2$
f.
$x^2+x+1>0$
$\Leftrightarrow (x+\frac{1}{2})^2+\frac{3}{4}>0$
$\Leftrightarrow x\in\mathbb{R}$