\(\left\{{}\begin{matrix}x_1=1\\x_{n+1}=\sqrt{x_n\left(x_n+1\right)\left(x_n+2\right)\left(x_n+3+1\right)}\end{matrix}\right.\). Đặt \(\dfrac{y_n}{x_n}=\sum\limits^n_{i=1}\dfrac{1}{x_i+2}\). Tìm lim \(y_n\)
Viết năm số hạng đầu và khảo sát tính năng, giảm của các dãy số \(\left(u_n\right)\), biết :
a) \(u_n=10^{1-2n}\)
b) \(u_n=3^n-7\)
c) \(u_n=\dfrac{2n+1}{n^2}\)
d) \(u_n=\dfrac{3^n\sqrt{n}}{2^n}\)
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!
Cho hàm số f: R\(\rightarrow\)R , \(n\ge2\) là số nguyên . CMR: nếu
\(\dfrac{f\left(x\right)+f\left(y\right)}{2}\ge f\left(\dfrac{x+y}{2}\right)\forall x,y\ge0\) (1) thì ta có :
\(\dfrac{f\left(x_1\right)+f\left(x_2\right)+....+f\left(x_n\right)}{n}\ge f\left(\dfrac{x_1+x_2+...+x_n}{n}\right)\) \(\forall x\ge0,i=\overline{l,n}\)
Trong các dãy số \(\left(u_n\right)\) sau, dãy số nào bị chặn dưới, bị chặn trên và bị chặn ?
a) \(u_n=2n^2-1\)
b) \(u_n=\dfrac{1}{n\left(n+2\right)}\)
c) \(u_n=\dfrac{1}{2n^2-1}\)
d) \(u_n=\sin n+\cos n\)
Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)
Cho dãy un xác định: \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{2+u_n}\end{matrix}\right.\forall n\in N^{\cdot}\). Xác định số hạng tổng quát của dãy, xét tính tăng giảm của dãy đó.
Cho dãy số xác định bởi: \(\left(u_n\right)\left\{{}\begin{matrix}u_1=\sqrt{2851}\\\left(u_{n+1}\right)^2=u_n^2+n\end{matrix}\right.\) , \(n\ge1,n\in N^{\cdot}\)
Số hạng thứ 2020 của dãy là bao nhiêu?