k. \(\left(2x+\dfrac{3}{5}\right)\cdot2-\dfrac{9}{25}=0\\ \Leftrightarrow\left(2x+\dfrac{3}{5}\right)\cdot2=\dfrac{9}{25}\\ \Leftrightarrow2x+\dfrac{3}{5}=\dfrac{9}{50}\\ \Leftrightarrow2x=\dfrac{-21}{50}\\ \Leftrightarrow x=\dfrac{-21}{100}\)
l. \(3\left(3x-\dfrac{1}{2}\right)\cdot3+\dfrac{1}{9}=0\\ \Leftrightarrow\left(3x-\dfrac{1}{2}\right)\cdot9=-\dfrac{1}{9}\\ \Leftrightarrow3x-\dfrac{1}{2}=-\dfrac{1}{81}\\ \Leftrightarrow3x=\dfrac{79}{162}\\ \Leftrightarrow x=\dfrac{79}{486}\)