Tính tích phân: \(\int\limits^{log\left(1+\sqrt{2}\right)}_0\left(\dfrac{e^x-e^{-x}}{2}\right)^3\cdot\left(\dfrac{e^x+e^{-x}}{2}\right)^{11}dx\)
Tính các tích phân:
a) \(\int\limits^1_0\)\(\dfrac{xe^x+1+x}{e^x+1}\)dx
b)\(\int\limits^{\dfrac{\pi}{2}}_0\)\(\dfrac{1-\sin\left(x\right)}{1+\cos\left(x\right)}\)dx
c)\(\int\limits^2_1\)\(\dfrac{\left(x-1\right)ln\left(x\right)}{x^2}\)dx
d)\(\int\limits^e_1\)ln( x + 1)dx
Tính tích phân sau :
\(I=\int\limits^5_1\left(\frac{x}{\sqrt{x-1}+1}+\frac{\ln x}{\left(x+1\right)^2}\right)dx\)
\(\int\limits^2_{\frac{1}{2}}\frac{1}{x\left(x+1\right)}dx\)
\(\int\limits^e_1\frac{1}{x\left(lnx+2\right)}dx\)
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx\)
Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\)
a) 1
b) 2
c) 4
d) 5
Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\) và \(a^2+b^2=17\). Tính \(a^b+b^{-a}\)
a) \(\frac{2}{3}\)
b) \(1\)
c) \(0\)
d) \(\frac{5}{4}\)
Câu 3: Cho hàm số \(f\left(x\right)\) xác định trên \(R\). Và thoả mản \(f\left(\sqrt{2x}\right)=f’\left(x\right)\) và \(\int\limits^e_1f\left(\sqrt{ln\left(x\right)}\right)dx=3\) . Tính \(\int\limits^{\pi}_02.f\left(cos\left(2x\right)\right)dx\) bằng
a) \(0\)
b) \(2\pi\)
c) \(3\pi\)
d) \(9,425\)
Câu 4: Họ nguyên hàm của hàm số \(\int\frac{3x+a}{x^2+4}dx\) có dạng \(\frac{3}{2}ln\left(x^2+4\right)+arctan\left(\frac{x}{2}\right)+C,C\in R\). Tính \(\int\limits^{\frac{e}{a+2}}_1ln\left(x\right)dx\) bằng
a) 1
b) \(-\frac{ln\left(2^e\right)}{2}+1\)
c) \(1-\frac{ln\left(3^e\right)}{3}\)
d) Đáp án khác
Câu 5: Gọi \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\). Biết \(f”\left(x\right)=-\frac{1}{4x\sqrt{x}},f’\left(2\right)=2+\frac{1}{2\sqrt{2}}\), \(f\left(4\right)=10\) và \(F\left(1\right)=1+\frac{2}{3}\). Tính \(\int\limits^1_0F\left(x\right)dx\) bằng
a) \(\frac{5}{3}\)
b) \(\frac{3}{4}\)
c) \(\frac{3}{5}\)
d) \(\frac{4}{3}\)
Tính tích phân :
\(\int\limits^3_1\frac{3+\ln x}{\left(x+1\right)^2}dx\)
Tính tích phân \(I=\int\limits^{\dfrac{\Pi}{2}}_0\left(2cos^2\dfrac{x}{2}+xcosx\right)e^{sinx}dx\)
Giúp mình với ạ♥