You mean "how many divisors of \(8^6.9^{20}.10^{18}\) are pefect squares"?
\(A=8^6.9^{20}.10^{18}=2^{18}.3^{40}.2^{18}.5^{18}=2^{36}.3^{40}.5^{18}=\left(2^{18}.3^{20}.5^9\right)^2\)
\(B=2^{18}.3^{20}.5^9\)
\(B\) has \(\left(18+1\right).\left(20+1\right).\left(9+1\right)=3990\) divisors, so total number of cases are \(3990\)