Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, cạnh bên SC tạo với mặt đáy một góc 60 độ. Diện tích của mặt cầu ngoại tiếp hình chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, cạnh bên SC tạo với mặt đáy một góc 60 độ. Diện tích của mặt cầu ngoại tiếp hình chóp S.ABCD là:
1)Cho khối lập phương có độ dài đường chéo bằng \(\sqrt{3}\)cm. Tính thể tích khối lập phương đó
2) Cho hình khối lăng trụ tam giác ABC.A'B'C' có thể tích bằng 1. TÍnh thể tích khối chóp A'.ABC' theo V
3)Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tamiacs đều cạnh a và đường thẳng A'C tạo với mặt phẳng (ABB'A') một góc 300 . Tính thể tích khối lăng trụ ABC.A'B'C'
4)Cho hình chóp tam giác S.ABC có ASB=CSB=600 , SA=SB=SC=2a. Tính thể tích khối chóp S.ABCD
5) Cho hình chóp S.ABCD có SA vuông góc với (ABCD), SB=\(a\sqrt{5}\), ABCD là hình thoi cạnh a, góc ABC = 600 . Tính thể tích khối chóp S.ABCD
HELP ME!!!!!
1> Cho hình chóp S.ABC có đáy là tam giác cân, AB = AC = a, (SBC) vuông góc với (ABC) và SA = SB =a. Cmr ∆ SBC vuông. Biết SC= x, tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABC
2> Cho lăng trụ đứng tam giác ABC.A’B’C’ biết AA’ = AB = a, AC = 2a và góc BAC = 60⁰. Gọi M = A’C ∩ AC’. Tính thể tích tứ diện MBB’C và tính bán kính mặt cầu ngoại tiếp hình lăng trụ.
Giúp vs t đang cần gấp ạ: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC có đáy ABC là tam giác vuông cân tại B; AB = a, góc ACB = 30 độ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 60 độ. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Tính theo a thể tích khối lăng trụ ABC.A’B’C’và khoảng cách từ điểm C’ đến mặt phẳng (BMB’).
*(8GP) Trích Câu 39, mã đề 115, đề kiểm tra giữa học kì II, môn Toán không chuyên, lớp 12, năm học 2022-2023, trường THPT Chu Văn An - Hà Nội:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, cạnh bên SA vuông góc với đáy và SA = a. Gọi M là trung điểm của cạnh AD và (S) là mặt cầu ngoại tiếp hình tứ diện SCDM. Bán kính của (S) bằng:
A. \(\dfrac{3}{2}\)
B. \(\dfrac{\sqrt{11}}{2}\)
C. \(\dfrac{\sqrt{14}}{2}\)
D. \(\dfrac{\sqrt{26}}{2}\)
*Câu hỏi phụ: Liệu rằng, đơn vị của bán kính (S) trong 4 đáp án trên đã chính xác? Và liệu bán kính (S) có luôn bằng 1 trong 4 đáp án trên với mọi giá trị của a và thuộc tính hình khi thay đổi?
Mình sẽ trao 8GP cho bạn nào trả lời đúng đáp án, giải thích câu hỏi chính cũng như trả lời thuyết phục những câu hỏi phụ. Em cũng rất mong các anh chị giáo viên Toán hoc24 sẽ giúp em giải đáp thắc mắc câu hỏi phụ ạ.
Cho tam giác cân MBC có BMC = 120 độ và đường cao MH = acăn2
Trên đường thẳng vuông góc với mặt phẳng (MBC) tại M lấy 2 điểm A và D về 2 phía của điểm M sao cho
tam giác ABC đều và tam giác DBC vuông cân tại D.
Tính thể tích khối cầu ngoại tiếp tứ diện ABCD
thầy vẽ hình giúp em với ạ.
1>cho S.ABC có tam giác ABC vuông cân tại A, AB=a và SH vuông (ABC) với H là đối xứng của A qua B, SH = 2a .Tính bán kính mặt cầu ngoại tiếp S.ABC và thể tích khối cầu ngoại tiếp đó