Hãy nhắc lại định lí côsin trong tam giác. Từ các hệ thức này hãy tính cosA, cosB và cosC theo các cạnh của tam giác ?
Nhắc lại định nghĩa tích vô hướng của hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Tích vô hướng này với \(\left|\overrightarrow{a}\right|\) và \(\left|\overrightarrow{b}\right|\) không đổi đạt giá trị lớn nhất và nhỏ nhất khi nào ?
Cho tan\(\alpha\) + cot\(\alpha\) = 2
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính E = \(\dfrac{sin\alpha.cos\alpha}{tan^2\alpha+cot^2\alpha}\)
Cho sin\(\alpha\) + cos\(\alpha\) =\(\sqrt{2}\)
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
1) Xet alpha thuoc R tuy y, menh de nao duoi day dung
A. Sin ( alpha + k3pi ) = Sin alpha, voi moi k thuoc Z
B. Sin (alpha + kpi) = Sin alpha, voi k thuoc Z
C. Sin(alpha + k2pi) = Sin (- alpha), voi moi k thuoc Z
D. Sin (alpha + 2pi) = Sin alpha, voi moi k thuoc Z
1) Goi alpha la so do cua 1 cung luong giac co diem dau A, diem cuoi B. Khi do so do cua cac cung luong giac bat ki co diem dau A, diem cuoi B bang
A. pi - alpha + k2pi, k thuoc Z
B. alpha + kpi, k thuoc Z
C. alpha + k2pi, k thuoc Z
D. -alpha + k2pi, k thuoc Z
Cho tam giác ABC có \(\widehat{BAC}=60^0;AB=4;AC=6\)
a) Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC};\overrightarrow{AB}.\overrightarrow{BC}\), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC
b) Lấy các điểm M, N định bởi : \(2\overrightarrow{AM}+3\overrightarrow{MC}=\overrightarrow{0};\overrightarrow{NB}+x\overrightarrow{BC}=\overrightarrow{0};\left(x\ne-1\right)\). Định \(x\) để AN vuông góc với BM ?
Cho sin α + cos α=√2
a, Tính cos α, sin α, tan α, cot α
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
cho hình vuông abcd ,gọi e là trung điểm ab,f là điểm sao cho af =1/3ad,m là điểm trên đường thẳng bc sao cho mc=k.bc .tìm giá trị k để 2 đường thẳng ef và fm vuông góc với nhau