Cho hình vuông ABCD có cạnh bằng 3a, tâm O; E là điểm trên cạnh BC và BE =a
a) Tính cạnh OE và bán kính đường tròn ngoại tiếp tam giác OBE
b) Gọi G là trọng tâm tam giác ACD. Tính tích vô hướng : \(\overrightarrow{GA}.\overrightarrow{GC}\)
Cho tam giác ABC .Gọi I là điểm trên cạnh Bc sao cho 2CI=3BI, gọi J là điểm thuộc tia đối của tia BC sao cho 5JB=2JC.
a.Tính vectơ AI và vecto AJ theo vectơ AB va vecto Ac
b. Gọi G là trọng tâm tam giác.Tính vecto AG theo vecto Ab và AC
c.gọi điểm E thuộc cạnh Ab sao cho AE=kEB.tìm k để G,E,J thẳng hàng
mong mọi người giúp hộ mình !!
Bài 3 : Cho nửa dduwwongf tròn tâm O đường kisnhn AB. Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy.Vẽ AD và BC vuông góc với xy
a. CMR MC = MD
b. CMR AD + BC có giá trị không đổi khi điểm M di động trên nửa đường tròn
c. CMR đường tròn đường kính CD tiếp xúc với ba đường thẳng AD,BC và AB
d. Xác định vị trí của điểm M trên nửa đường tròn (O) để cho diện tích tứ giác ABCD lớn nhất
Bìa 4 : Cho tam giác đều ABC, O là trung điểm của BC. Trên các cạnh AB,AC lần lượt lấy các điểm di động D,E sao cho ^DOE = 60o ( o là độ)
a. CMR tích BD.CE không đổi
b. CM tam giác BOD đồng dạng tam giác OED . Từ đó suy ra tia DO là tia phân giác của góc BDE
c. Vẽ đường tròn tâm O tiếp xúc với AB. CMR đường tròn này luôn tiếp xúc với DE
Cho tam giác ABC có AB=3 AC=5 góc BAC=60°. Gọi M là điểm thuộc đoạn BC sao cho BM=2MC . Tính độ dài đoạn AM
cho tg ABC vuông tại B có A= 30 độ, AB=a. gọi I là trung điểm của AC. Tính
a, Vectơ[ BA+BC]
b, vectơ[ AB+AC]
Cho tam giác ABC có \(\widehat{BAC}=60^0;AB=4;AC=6\)
a) Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC};\overrightarrow{AB}.\overrightarrow{BC}\), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC
b) Lấy các điểm M, N định bởi : \(2\overrightarrow{AM}+3\overrightarrow{MC}=\overrightarrow{0};\overrightarrow{NB}+x\overrightarrow{BC}=\overrightarrow{0};\left(x\ne-1\right)\). Định \(x\) để AN vuông góc với BM ?
Bài 5 : Cho nửa đường tròn (O;R) đường kính AB và một điểm E di động trên nửa đường tròn đó (E không trùng với A và B ) Vẽ các tia tiếp tuyến Ax, By với nửa đường tròn. Tia AE cắt By tại C, tia BE cắt Ax tại D
a. CMR tích AD.BC không đổi
b. Tiếp tuyến tại E của nửa đường tròn cắt Ax,By theo thứ tự tại M và N. CMR ba đường thẳng MN,AB,CD đồng quy hoặc song song với nhau
c. Xác định vị trí của điểm E trên nửa đường tròn để diện tich tứ giác ABCD nhỏ nhất. Tính diện tich nhỏ nhất đó
Bài 6: Cho đoạn thẳng AB cố định. Vẽ đường tròn (O) tiếp xúc với AB tại A, đường tròn (O') tiếp xúc với AB tại B. Hai đường tròn này luôn thuộc cùng một nửa mặt phẳng bờ AB và luôn tiếp xúc ngoài với nhau. Hỏi tiếp điểm M của hai đường tròn di động trên đường nào ?
Cho tam giác ABC có BC = a, CA = b, AB = c
a) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{b^2+c^2-a^2}{2}\)
b) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=AI^2-\dfrac{BC^2}{4}\) với I là trung điểm của BC
c) Gọi G là trọng tâm của tam giác ABC, với M là điểm bất kì trong mặt phẳng, chứng minh hệ thức sau ;
\(MA^2+MB^2+MC^2=GA^2+GB^2+GC^2+3MG^2\)
Bài 2: Trong mặt phẳng hệ tọa độ Oxy cho AABC có M(0;5) là trung điểm cạnh BC. Đường thẳng
chứa cạnh AB, AC lần lượt có phương trình 2x +y-12 =0, x+4y-6=0. Tìm tọa độ 3 đỉnh của tam
giác ABC.