Bài 3 : Cho nửa dduwwongf tròn tâm O đường kisnhn AB. Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy.Vẽ AD và BC vuông góc với xy
a. CMR MC = MD
b. CMR AD + BC có giá trị không đổi khi điểm M di động trên nửa đường tròn
c. CMR đường tròn đường kính CD tiếp xúc với ba đường thẳng AD,BC và AB
d. Xác định vị trí của điểm M trên nửa đường tròn (O) để cho diện tích tứ giác ABCD lớn nhất
Bìa 4 : Cho tam giác đều ABC, O là trung điểm của BC. Trên các cạnh AB,AC lần lượt lấy các điểm di động D,E sao cho ^DOE = 60o ( o là độ)
a. CMR tích BD.CE không đổi
b. CM tam giác BOD đồng dạng tam giác OED . Từ đó suy ra tia DO là tia phân giác của góc BDE
c. Vẽ đường tròn tâm O tiếp xúc với AB. CMR đường tròn này luôn tiếp xúc với DE