Cho sin\(\alpha\) + cos\(\alpha\) =\(\sqrt{2}\)
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
Cho tan\(\alpha\) + cot\(\alpha\) = 2
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính E = \(\dfrac{sin\alpha.cos\alpha}{tan^2\alpha+cot^2\alpha}\)
Cm biểu thức sau ko phụ thuộc vào a
\(\sqrt{sin^4a+cos^2a}+\sqrt{cos^4a+4sin^2a}\)
Cm biểu thức sau ko phụ thuộc vào a
A = \(2\left(sin^6a+cos^6a\right)-3\left(sin^4a+4sin^2a\right)\)
1) Xet alpha thuoc R tuy y, menh de nao duoi day dung
A. Sin ( alpha + k3pi ) = Sin alpha, voi moi k thuoc Z
B. Sin (alpha + kpi) = Sin alpha, voi k thuoc Z
C. Sin(alpha + k2pi) = Sin (- alpha), voi moi k thuoc Z
D. Sin (alpha + 2pi) = Sin alpha, voi moi k thuoc Z
1,c/m
\(\dfrac{2cos^2\left(\dfrac{\pi}{4}-x\right)+\cos x-1}{\cos x}-2\sin x=1\)
2, cho tam giác ABC có BC=a , CA=b , AB =c . Tính số đo góc C của tg biết , (a+b+c) (a+b-c)= 3ab
Chứng minh rằng với mọi tam giác ABC, ta có \(a=2R\sin A\), \(b=2R\sin B;c=2R\sin C\), trong đó R là bán kính đường tròn ngoại tiếp tam giác ?
Cho tam giác ABC có BC = a; CA = b; AB = c.
Chứng minh rằng :
\(b^2-c^2=a\left(b\cos C-c\cos B\right)\)
Cho tam giác ABC có a = 13, b = 14, c = 15
a) Tính diện tích tam giác ABC
b) Tính cos B, góc B nhọn hay tù
c) Tính bán kính đường tròn ngoại tiếp và nội tiếp của tam giác
d) Tính độ dài trung tuyến \(m_b\)