Đề bài không chính xác, biểu thức này vẫn phụ thuộc a
Đề bài đúng phải là: \(\sqrt{sin^4a+4cos^2a}+\sqrt{cos^4a+4sin^2a}\)
Đề bài không chính xác, biểu thức này vẫn phụ thuộc a
Đề bài đúng phải là: \(\sqrt{sin^4a+4cos^2a}+\sqrt{cos^4a+4sin^2a}\)
Cm biểu thức sau ko phụ thuộc vào a
A = \(2\left(sin^6a+cos^6a\right)-3\left(sin^4a+4sin^2a\right)\)
Cho sin α + cos α=√2
a, Tính cos α, sin α, tan α, cot α
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
Cho sin\(\alpha\) + cos\(\alpha\) =\(\sqrt{2}\)
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
Cho tan\(\alpha\) + cot\(\alpha\) = 2
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính E = \(\dfrac{sin\alpha.cos\alpha}{tan^2\alpha+cot^2\alpha}\)
1,c/m
\(\dfrac{2cos^2\left(\dfrac{\pi}{4}-x\right)+\cos x-1}{\cos x}-2\sin x=1\)
2, cho tam giác ABC có BC=a , CA=b , AB =c . Tính số đo góc C của tg biết , (a+b+c) (a+b-c)= 3ab
Tính giá trị biểu thức:
\(A=\dfrac{1}{\sin10^0}-\dfrac{\sqrt{3}}{\cos10^0}\)
Từ hệ thức \(a^2=b^2+c^2-2bc\cos A\) trong tam giác, hãy suy ra định lý Pi-ta-go ?
Cho tam giác ABC có BC = a; CA = b; AB = c.
Chứng minh rằng :
\(b^2-c^2=a\left(b\cos C-c\cos B\right)\)
Tam giác ABC có cạnh \(BC=2\sqrt{3}\), cạnh \(AC=2\) và \(\widehat{C}=30^0\)
a) Tính cạnh AB và sin A
b) Tính diện tích S của tam giác ABC
c) Tính chiều cao \(h_a\) và trung tuyến \(m_a\)