Hình vuông cũng là hình thoi, hình chữ nhật.
Mà hình chữ nhật có hai đường chéo bằng nhau còn hình thoi có hai đường chéo vuông góc với nhau.
Do đó, hai đường chéo của hình vuông bằng nhau và vuông góc với nhau.
Hình vuông cũng là hình thoi, hình chữ nhật.
Mà hình chữ nhật có hai đường chéo bằng nhau còn hình thoi có hai đường chéo vuông góc với nhau.
Do đó, hai đường chéo của hình vuông bằng nhau và vuông góc với nhau.
Cho hình thoi ABCD có hai đường chéo AC, BD cắt nhau tại O (H.3.48).
a) ∆ABD có cân tại A không?
b) AC có vuông góc với BD không và AC có là đường phân giác của góc A không? Vì sao?
Cho tam giác ABC, D là một điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB, AC, chúng cắt các cạnh AC, AB lần lượt tại E, F.
a) Tứ giác AEDF là hình gì? Vì sao?
b) Nếu tam giác ABC cân tại A thì điểm D ở vị trí nào trên cạnh BC để tứ giác AEDF là hình thoi?
c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì?
d) Nếu tam giác ABC vuông cân tại A thì điểm D ở vị trí nào trên cạnh BC để AEDF là hình vuông?
Lấy một tờ giấy, gấp làm tư tạo ra một góc vuông O, đánh dấu hai điểm A, B trên hai cạnh góc vuông rồi cắt theo đoạn thẳng AB (H.3.46a). Sau khi mở tờ giấy ra, ta được một tứ giác. Tứ giác đó là hình gì? Vì sao? Nếu ta có OA = OB thì tứ giác nhận được là hình gì (H.3.46b)?
Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA ⊥ MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.56).
Trong Hình 3.51, hình nào là hình thoi? Vì sao?
Với mỗi hình dưới đây, ta dùng dấu hiệu nhận biết nào để khẳng định đó là hình vuông?
Chứng minh rằng các trung điểm của bốn cạnh trong một hình chữ nhật là các đỉnh của một hình thoi.
Chứng minh rằng các trung điểm của bốn cạnh trong một hình chữ nhật là các đỉnh của một hình thoi.
Hình thoi có phải là hình bình hành không? Nếu có, từ tính chất đã biết của hình bình hành, hãy suy ra những tính chất tương ứng của hình thoi.