Bài 14. Hình thoi và hình vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA ⊥ MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.56).

Hà Quang Minh
8 tháng 9 2023 lúc 18:31

Do ABCD là hình chữ nhật nên \(\left\{{}\begin{matrix}AB=CD\\AD=BC\end{matrix}\right.\)

Mà M là trung điểm BC ⇒ \(\left\{{}\begin{matrix}MA=MD\\MB=MC\end{matrix}\right.\) (1)

Áp dụng định lí Py-ta-go trong tam giác ABM, MCD, AMD, ta có: 

\(\left\{{}\begin{matrix}AB^2+MB^2=AM^2\\CD^2+MC^2=MD^2\\AM^2+MD^2=AD^2\end{matrix}\right.\) (2)

Từ (1) và (2), ta có:

 \(2AB^2+2BM^2=AD^2=BC^2=4BM^2\)

\(\Rightarrow AB=BM=\dfrac{1}{2}BC\)

Mà \(2\cdot\left(AB+BC\right)=36\)

⇒ AB = 6 (cm) và BC = 12 (cm).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết