Cho hàm số f(x) = |\(\sqrt{2x-x^2}-3m+4\)|. Để giá trị lớn nhất của hàm số f(x) đạt giá trị nhỏ nhất thì ta có
A. m \(\in\) (-2;-1) B. m \(\in\) (3;5) C. m \(\in\) (-1;0) D. m \(\in\) (1;2)
Giải chi tiết ra giúp em nha Cảm ơn nhiều ạ
Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=5\) và x - y + z = 3 . Giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+y-2}{z+2}\) bằng
A. \(\dfrac{1}{2}\) B. \(0\) C. \(\dfrac{-36}{23}\) D. \(\dfrac{-13}{4}\)
B7 Tìm giá trị nhỏ nhất của hàm số y=\(\frac{3}{-x^2+4x-8}\)
B8 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số a y=\(\frac{3-4x}{x^2+1}\)
b y=\(\frac{4x^2+6x+10}{x^2+2x+3}\)
c y=\(\frac{x+1}{x^2+x+1}\)
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \(\sqrt{x^2-2mx-2m+3}\) có tập xác định là R
a) Vẽ trên cùng một hệ trục tọa độ đồ thị các hàm số sau :
\(y=f\left(x\right)=\left|x+3\right|-1\)
\(y=g\left(x\right)=\left|2x-m\right|\)
trong đó m là tham số
Xác định hoành độ các giao điểm của mỗi đồ thị với trục hoành
b) Tìm các giá trị của tham số m để bất phương trình sau nghiệm đúng với mọi giá trị của x
\(\left|2x-m\right|>\left|x+3\right|-1\)
CMR hàm số sau có TXĐ là R với mọi giá trị của m:
y=\(\dfrac{mx}{\left(2m^2+1\right)\left(x^2-4mx+2\right)}\)
Câu 1: Tập xác định của hàm số y=3x2+2x+2 là
A.∅ B.R C.R\{2} D.[3;+∞)
Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)
A.2 B.3 C.4 D.5
Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:
A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\) B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\) C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)
D. Hệ vô nghiệm
Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành
A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\) C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)
Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)
A.0 B.1 C.2 D.Vô nghiệm
Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)
A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\)) B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\)) C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\)) D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))
Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?
A.(1;1;1) B.(2;2;1) C.(-1;1;2) D.(1;2;1)
Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó
A.Góc C>90o B. Góc C<90o C. Góc C=90o D. Không thể kết luận được gì về góc
C
Câu 9 : Tập nghiệm bất phương trinh x2<0
A.R B.∅ C.(-1;0) D.(-1;+∞)
Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0
A.R B.∅ C.(-1;0) D.(-1;+∞)