Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(Điều kiện: x>24)
Thời gian người thứ hai hoàn thành công việc khi làm một mình là:
x-20(ngày)
Trong 1 ngày, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 ngày, người thứ hai làm được: \(\dfrac{1}{x-20}\)(công việc)
Trong 1 ngày, hai người làm được: \(\dfrac{1}{24}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{x-20}=\dfrac{1}{24}\)
\(\Leftrightarrow\dfrac{24\left(x-20\right)}{x\left(x-20\right)}+\dfrac{24x}{24x\left(x-20\right)}=\dfrac{x\left(x-20\right)}{24x\left(x-20\right)}\)
Suy ra: \(x^2-20x=24x-480+24x\)
\(\Leftrightarrow x^2-68x+480=0\)
\(\Delta=\left(-68\right)^2-4\cdot1\cdot480=2704\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{68-52}{2}=8\left(loại\right)\\x_2=\dfrac{68+52}{2}=\dfrac{120}{2}=60\left(nhận\right)\end{matrix}\right.\)
Vậy: Người thứ nhất cần 60 ngày để hoàn thành công việc khi làm một mình
Người thứ hai cần 40 ngày để hoàn thành công việc khi làm một mình