\(PT\Leftrightarrow4x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=-3x^3\)
\(\Leftrightarrow x+2=\sqrt[3]{-3}x\)
\(\Leftrightarrow x\left(1+\sqrt[3]{3}\right)=-2\Leftrightarrow x=-\dfrac{2}{1+\sqrt[3]{3}}\)
\(PT\Leftrightarrow4x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=-3x^3\)
\(\Leftrightarrow x+2=\sqrt[3]{-3}x\)
\(\Leftrightarrow x\left(1+\sqrt[3]{3}\right)=-2\Leftrightarrow x=-\dfrac{2}{1+\sqrt[3]{3}}\)
A| 4x^2 -4√3x+3=0; B | √( x + 3)^4 =4; √4x^2 =2x +1
làm ơn giải hộ mk bài này vs
\(\sqrt{3x-2}+\sqrt{x-1}\)
\(\sqrt{x+9}=5-\sqrt{2x+4}\)
\(x^2+\sqrt{x+1}=1\)
\(x-\sqrt{4x-3}=2\)
\(x+\sqrt{2x+15}=0\)
\(x^2-6x+\sqrt{x^2-6x+7}=5\)
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
a:\(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}\left(b>0;a\ne4\right)\)
b:\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne0\right)\)
c:\(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}\left(a>0;b\ne2\right)}\)
d:\(\dfrac{x}{\left(y-3\right)^2}.\sqrt{\dfrac{\left(y-3\right)^2}{x^2}\left(x>0;y\ne3\right)}\)
e:2x +\(\dfrac{\sqrt{1-6x+9x^2}}{3x-1}\)
câu 1 GPT
a,\(\sqrt{9-12x+4x^2}=4\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}=1\)
BT1: Rút gọn:
A=\(\dfrac{3x}{x-2}\sqrt{4-4x+4}vớix>2\)
B=\(\dfrac{-5y}{x+3}\sqrt{x^2+6x+9}vớix\ne-3\)
giải phương trình
a)\(\sqrt{x^2-6x+9}=4\)
b)\(\sqrt{4x^2-4x+1}=5x+3\)
c)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
d)\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)
e)\(\sqrt{9x^2-12x+4}=\sqrt{x^2-10x+25}\)
Tìm GTNN:
A=\(\sqrt{25-10x+x^2}-\sqrt{x^2-6x+9}\)
B:\(\dfrac{1}{2x^2-x+3}\)
C: x2 - 2xy + 3y2 - 2x + 2017
D: x-\(\sqrt{x-2015}\)
E:\(\dfrac{2x+1}{x^2}\)
F: \(\dfrac{5x^2-4x+4}{x^2}\)
G=(x+1)(x+2)2(x+3)
H= X2-5x+y2+xy-4y+2014
I= x2 +xy +y2-3x-3y +2002
K=\(\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)