b: Ta có: \(\sqrt{\left(x+3\right)^4}=4\)
\(\Leftrightarrow\left(x+3\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
b: Ta có: \(\sqrt{\left(x+3\right)^4}=4\)
\(\Leftrightarrow\left(x+3\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
a) 1/2 * sqrt(x - 1) - sqrt(4x - 4) + 3 = 0 c) sqrt(7 - x + 1) = x b) sqrt(x ^ 2 - 4x + 4) + x - 2 = 0
Với giá trị nào của x thì các căn thức trên có nghĩa :
a)\(\sqrt{3x^2+1}\)
b)\(\sqrt{4x^2-4x+1}\)
c)\(\sqrt{\dfrac{3}{x+4}}\)
h)\(\sqrt{x^2-4}\)
i) \(\sqrt{\dfrac{2+x}{5-x}}\)
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
giải phương trình
a)\(\sqrt{x^2-6x+9}=4\)
b)\(\sqrt{4x^2-4x+1}=5x+3\)
c)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
d)\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)
e)\(\sqrt{9x^2-12x+4}=\sqrt{x^2-10x+25}\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Tìm điệu kiện của x để các biểu thức sau có nghĩa
a) \(\sqrt{-4x+16}\) h) \(\frac{\sqrt{3x-12}}{x-5}\)
b) \(\sqrt{\frac{-3}{2x-1}}\) k) \(\sqrt{x-1}\div\frac{x-2}{x-3}\)
c) \(\sqrt{-5x^2}\) m) \(\sqrt{\frac{2x-3}{x-2}}+\frac{1}{x-4}\)
d) \(\sqrt{\frac{-3}{-x^2-4x-4}}\)
e) \(\sqrt{\frac{2x-4}{-3}}\)
f) \(\frac{\sqrt{3x-9}}{\sqrt{2x-8}}\)
Giải các pt sau:
a)\(\left|3x+1\right|=\left|x+1\right|\)
b)\(\left|x^2-3\right|=\left|x-\sqrt{3}\right|\)
c)\(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)
d)\(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
f)\(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
g) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
h) \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)
Mọi người giúp em gấp với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!