\(x^4-2x+\dfrac{1}{2}=0\)
\(\Leftrightarrow4x^4-8x+2=0\)
\(\Leftrightarrow\left(4x^4+8x^2+4\right)-\left(8x^2+8x+2\right)=0\)
\(\Leftrightarrow4\left(x^2+1\right)^2-\left(2\sqrt{2}x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2\sqrt{2}x+2-\sqrt{2}\right)\left(2x^2+2\sqrt{2}x+2+\sqrt{2}\right)=0\)
\(\Leftrightarrow2x^2-2\sqrt{2}x+2-\sqrt{2}=0\)
vì \(2x^2+2\sqrt{2}x+2+\sqrt{2}\ge1+\sqrt{2}>0\)
\(\Delta=\left(-2\sqrt{2}\right)^2-4\times2\times\left(2-\sqrt{2}\right)=-8+8\sqrt{2}>0\)
Suy ra pt có hai no phân biệt:
\(x_1=\dfrac{-\left(-2\sqrt{2}\right)+\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\)
\(x_1=\dfrac{-\left(-2\sqrt{2}\right)-\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2}\)
Vậy \(S=\left\{\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2};\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\right\}\)