Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng

Gpt : \(x^4-2x+\dfrac{1}{2}=0\)

F. Annie
6 tháng 10 2017 lúc 22:01

\(x^4-2x+\dfrac{1}{2}=0\)

\(\Leftrightarrow4x^4-8x+2=0\)

\(\Leftrightarrow\left(4x^4+8x^2+4\right)-\left(8x^2+8x+2\right)=0\)

\(\Leftrightarrow4\left(x^2+1\right)^2-\left(2\sqrt{2}x+\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2\sqrt{2}x+2-\sqrt{2}\right)\left(2x^2+2\sqrt{2}x+2+\sqrt{2}\right)=0\)

\(\Leftrightarrow2x^2-2\sqrt{2}x+2-\sqrt{2}=0\)

\(2x^2+2\sqrt{2}x+2+\sqrt{2}\ge1+\sqrt{2}>0\)

\(\Delta=\left(-2\sqrt{2}\right)^2-4\times2\times\left(2-\sqrt{2}\right)=-8+8\sqrt{2}>0\)

Suy ra pt có hai no phân biệt:

\(x_1=\dfrac{-\left(-2\sqrt{2}\right)+\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\)

\(x_1=\dfrac{-\left(-2\sqrt{2}\right)-\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2}\)

Vậy \(S=\left\{\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2};\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\right\}\)


Các câu hỏi tương tự
Nhàn Nguyễn
Xem chi tiết
Nhàn Nguyễn
Xem chi tiết
Herimone
Xem chi tiết
Xem chi tiết
Xem chi tiết
Eren
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Lâm Tinh Thần
Xem chi tiết
Hải Yến Lê
Xem chi tiết