Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Đức Anh

Gpt  \(\left(x-2016\right)^2+\left(x-2017\right)^4=1\)

Trương Huy Hoàng
11 tháng 1 2021 lúc 21:56

Đặt x - 2017 = a 

Khi đó pt trên trở thành:

(a + 1)2 + a4 = 1

\(\Leftrightarrow\) a2 + 2a + 1 + a4 = 1

\(\Leftrightarrow\) a4 + a2 + 2a = 0

\(\Leftrightarrow\) a(a3 + a + 2) = 0

\(\Leftrightarrow\) a = 0 và a3 + a + 2 = 0

+) a3 + a + 2 = 0

\(\Leftrightarrow\) a3 - a + 2a + 2 = 0

\(\Leftrightarrow\) a(a2 - 1) + 2(a + 1) = 0

\(\Leftrightarrow\) a(a + 1)(a - 1) + 2(a + 1) = 0

\(\Leftrightarrow\) (a + 1)[a(a - 1) + 2] = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}a+1=0\\a\left(a-1\right)+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}a=-1\\a\left(a-1\right)+2=0\end{matrix}\right.\)

+) a(a - 1) + 2 = 0

\(\Leftrightarrow\) a2 - a + 2 = 0

\(\Leftrightarrow\) a2 - a + \(\dfrac{1}{4}\) + \(\dfrac{7}{4}\) = 0

\(\Leftrightarrow\) (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm vì (a - \(\dfrac{1}{2}\))\(\dfrac{7}{4}\) > 0 với mọi a)

Vậy a = 0; a = 1

Với a = 0 \(\Rightarrow\) x - 2017 = 0 \(\Leftrightarrow\) x = 2017

Với a = -1 \(\Rightarrow\) x - 2017 = -1 \(\Leftrightarrow\) x = 2016

Vậy S = {2017; 2016}

Chúc bn học tốt!

Trần Minh Hoàng
11 tháng 1 2021 lúc 23:33

Bài này cũng có thể đánh giá:

Xét các TH:

+) \(x>2017\Rightarrow x-2016>1>0\Rightarrow\left(x-2016\right)^2+\left(x-2017\right)^4\ge1\). (loại)

+) \(x< 2016\Rightarrow x-2017< -1< 0\Rightarrow\left(x-2016\right)^2+\left(x-2017\right)^4>1\). (loại)

+) \(2016< x< 2017\Rightarrow0< 2017-x< 1;0< x-2016< 1\Rightarrow\left(x-2016\right)^2+\left(x-2017\right)^4=\left(x-2016\right)^2+\left(2017-x\right)^4< x-2016+2017-x=1\) (loại).

Xét x = 2016 hoặc x = 2017 thì thoả mãn.

Vậy...

 


Các câu hỏi tương tự
trần thị trâm anh
Xem chi tiết
 ♫ Love Music  ♫
Xem chi tiết
Quang Huy Điền
Xem chi tiết
trần thị trâm anh
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
dia fic
Xem chi tiết
vietdat vietdat
Xem chi tiết
bach nhac lam
Xem chi tiết
Bánh Mì
Xem chi tiết