Đặt x - 2017 = a
Khi đó pt trên trở thành:
(a + 1)2 + a4 = 1
\(\Leftrightarrow\) a2 + 2a + 1 + a4 = 1
\(\Leftrightarrow\) a4 + a2 + 2a = 0
\(\Leftrightarrow\) a(a3 + a + 2) = 0
\(\Leftrightarrow\) a = 0 và a3 + a + 2 = 0
+) a3 + a + 2 = 0
\(\Leftrightarrow\) a3 - a + 2a + 2 = 0
\(\Leftrightarrow\) a(a2 - 1) + 2(a + 1) = 0
\(\Leftrightarrow\) a(a + 1)(a - 1) + 2(a + 1) = 0
\(\Leftrightarrow\) (a + 1)[a(a - 1) + 2] = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}a+1=0\\a\left(a-1\right)+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}a=-1\\a\left(a-1\right)+2=0\end{matrix}\right.\)
+) a(a - 1) + 2 = 0
\(\Leftrightarrow\) a2 - a + 2 = 0
\(\Leftrightarrow\) a2 - a + \(\dfrac{1}{4}\) + \(\dfrac{7}{4}\) = 0
\(\Leftrightarrow\) (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm vì (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) > 0 với mọi a)
Vậy a = 0; a = 1
Với a = 0 \(\Rightarrow\) x - 2017 = 0 \(\Leftrightarrow\) x = 2017
Với a = -1 \(\Rightarrow\) x - 2017 = -1 \(\Leftrightarrow\) x = 2016
Vậy S = {2017; 2016}
Chúc bn học tốt!
Bài này cũng có thể đánh giá:
Xét các TH:
+) \(x>2017\Rightarrow x-2016>1>0\Rightarrow\left(x-2016\right)^2+\left(x-2017\right)^4\ge1\). (loại)
+) \(x< 2016\Rightarrow x-2017< -1< 0\Rightarrow\left(x-2016\right)^2+\left(x-2017\right)^4>1\). (loại)
+) \(2016< x< 2017\Rightarrow0< 2017-x< 1;0< x-2016< 1\Rightarrow\left(x-2016\right)^2+\left(x-2017\right)^4=\left(x-2016\right)^2+\left(2017-x\right)^4< x-2016+2017-x=1\) (loại).
Xét x = 2016 hoặc x = 2017 thì thoả mãn.
Vậy...