\(\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2+16>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=-6m-7\end{matrix}\right.\)
\(C=4\left(m-3\right)^2+8\left(-6m-7\right)\)
\(=4m^2-24m+36-48m-56=4m^2-72m-20\)
\(=4\left(m^2-18m+81-81\right)-20=4\left(m-9\right)^2-344\ge-344\)
Dấu ''='' xảy ra khi m = 9
Bài giải cho đề: "Gọi x1, x2 là hai nghiệm của phương trình x2−2(m−3)−6m−7=0 với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: C=(x1+x2)2+8x1x2.".
\(\Delta\)=32m+4>0 \(\Rightarrow\) m>-1/8.
C=8.(-8m-1)=-64m-8.
Vậy: không tồn tại giá trị nhỏ nhất của C.
Bài giải cho đề: "Gọi x1, x2 là hai nghiệm của phương trình x2−2(m−3)x−6m−7=0 với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: C=(x1+x2)2+8x1x2.".
\(\Delta\)'=m2+16>0, \(\forall m\).
C=[2(m-3)]2+8(-6m-7)=4m2-72m-20.
Suy ra, Cmin=-344 khi m=9.