\(\Delta'=\left(m+1\right)^2-m^2+1=2\left(m+1\right)\ge0\Rightarrow m\ge-1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-1\end{matrix}\right.\)
\(A=x_1x_2+2\left(x_1+x_2\right)\)
\(A=m^2-1+4\left(m+1\right)=m^2+4m+3\)
\(A=\left(m+1\right)\left(m+3\right)\ge0\) \(\forall m\ge-1\)
\(A_{min}=0\) khi \(m=-1\)
Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2\left( {m + 1} \right) = 2m + 2\\ {x_1}{x_2} = {m^2} - 1 \end{array} \right.\)
Theo đề bài ta có:
\( A = {x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right)\\ A = {m^2} - 1 + 2\left( {2m + 2} \right)\\ A = {m^2} - 1 + 4m + 4\\ A = {m^2} + 4m + 3\\ A = \left( {{m^2} + 2.m.2 + {2^2}} \right) - 1\\ A = {\left( {m + 2} \right)^2} - 1 \ge - 1 \)
Vậy \(A_{min}=-1\Leftrightarrow m=-2\)