Cho tam giác ABC, M là điểm nằm trong tam giác. Gọi D,H,K thứ tự là hình chiếu của M trên BC, AC, AB. Gọi MD=m, MH=n, Mk=p và ha,hb,hc là các đường cao tương ứng. Chứng minh:
\(\dfrac{m}{h_a}+\dfrac{n}{h_b}+\dfrac{p}{h_c}=1\)
CHO \(\Delta ABC\) voi 3 duong cao AA', BB', CC'. Goi H la truc tam cua tam giac do. CMR: \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=1\)
HELP ME =.=
Cho a, b, c là độ dài 3 cạnh và x, y, z là độ dài 3 đường phân giác trong tam giác của các góc đối diện với cạnh đó. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho tam giác ABC nhọn. Các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng HA'/AA'+HB'/BB'+HC'/CC'.
b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. CMR: AN.BI.CM=BN.IC.AM.
c) CMR: (AB+BC+CA)^2/AA'^2+BB'^2+CC'^2 lớn hơn hoặc bằng 4
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a. CMR: BH.BE+CH.CF=BC2
b. Tính tổng: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}\)
c. Trên HB, HC lấy các điểm M;N sao cho HM=CN. CMR đường trung trực của MN luôn đi qua trung điểm của BC
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.AC}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.AC}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
\(S_{ABC}=\dfrac{AB.BC.CA}{2AN}\)