Gọi I,J,K lần lượt là trung điểm của các cạnh BC,CA,AB; các đường thẳng d1,d2 đi qua G và song song với AB,AC và cắt AC,AB tại L,H. Khi đó ta có: GL//AB=>AB/GL=BJ/GJ=3; GL//AM=>GL/AM=NG/MN.
Nhân hai đẳng thức theo vế thì được AB/AM=3NG/MN (*).
Một cách tương tự ta cũng chứng minh được AC/AN=3MG/MN (**).
Cộng (*) và (**) theo vế thì được AB/AM+AC/AN=3(NG+MG)/MN=3.