Đề: G trọng tâm tam giác ABC
và G' trọng tâm tam giác A'B'C'
Ta có: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\)
\(=3\overrightarrow{GG'}+\left(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}\right)+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)\(=3\overrightarrow{GG'}+\overrightarrow{0}+\overrightarrow{0}=3\overrightarrow{GG'}\left(đpcm\right)\)
Hai tam giác có cùng trọng tâm khi và chỉ khi \(G\equiv G'\)
\(\Rightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=0\)
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}\\ =\left(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\right)+\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)\\ =3\overrightarrow{GG'}-\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3\overrightarrow{GG'}-\overrightarrow{0}=3\overrightarrow{GG'}\)