\(G\left(x\right)=\left(x^{2011}+3.x^{2016}-1\right)^{2012}khi\left(x+3\right)=0\) Tính giá trị của biểu thức
Câu 1: Giá trị nhỏ nhất của
\(\left|x-3\right|+\left|Y+3\right|+2016\) là:...
Câu 2: Giá trị của x để biểu thức:
\(M=\left(2x-1\right)^2+\left(2y-1\right)+2013\)Đạt giá trị nhỏ nhất
Câu 3: Giá trị x>0 thỏa mãn (x-10)+(2x-6)=8
Tìm GTNN của các biểu thức :
a ) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
b ) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Tìm GTNN của các biểu thức :
a ) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
b ) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Tìm giá trị nhỏ nhất của biểu thức
B= \(\sqrt{\left(x-2y+1\right)}+\left(x-3y\right)^{2012}+3\)
Cho x,y,z khác o và x-y-z=0.
Tính giá trị biểu thức: \(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
Cho 3 số x , y ,z :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Bài 1: a) Cho \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\). So sánh A với \(\dfrac{-1}{2015}\)
b) Cho biểu thức \(A=\dfrac{3x^3-x^2-3x+2015}{3x^4-x^3+3x+2014}\). Tính giá trị của biểu thức với x=\(\dfrac{1}{3}\)
Với giá trị nào của x thì \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\) đạt giá trị nhỏ nhất?