Xét dấu của biểu thức sau: \(\dfrac{\left(x-1\right)\left(x^2-4x+5\right)}{\left|x+3\right|}\)
lập bảng xét dấu của các biểu thức : a) \(\frac{4-3x}{2x+1}\) b) 1- \(\frac{2-x}{3x-2}\) c) x(x-2)2(3-x) d) \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
lập bảng xét dấu của các biểu thức :
a) \(\frac{4-3x}{2x+1}\)
b) 1- \(\frac{2-x}{3x-2}\)
c) x(x-2)2(3-x)
d) \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
lập bảng xét dấu của các biểu thức : a) \(\frac{4-3x}{2x+1}\) ; b) 1- \(\frac{2-x}{3x-2}\) ; c) x(x-2)2(3-x) ; d) \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
Tập nghiệm của bất pt
a) \(\left|x+2\right|+\left|-2x+1\right|\le x+1\)
b) \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\)
c) \(\left|x+1\right|-\left|x-2\right|\ge3\)
d) \(\left|\dfrac{-5}{x+2}\right|< \left|\dfrac{10}{x-1}\right|\)
e) \(\left|\dfrac{2-3\left|x\right|}{1+x}\right|\le1\)
1) Xét dấu của biểu thức \(f\left(x\right)=\frac{\left(x-1\right)^5\left(2x+5\right)^{2014}}{x^9\left(-x+3\right)^{2015}}\)
2) Chứng minh rằng phương trình \(\left(m-1\right)x^2+\left(3m-2\right)x+3-2m=0\) luôn có nghiệm với mọi giá trị thực của tham số m
3) Xác định tham số m để hàm số \(y=\sqrt{\frac{-2016x^4-1}{\left(m+1\right)x^2+2\left(m+1\right)x-m-3}}\) có tập xác định D = R
Giải các bft bằng bảng xét dấu
a. \(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\)
b. \(x^4\ge\left(x^2+4x+2\right)^2\)
Câu 1 : Xét dấu các biểu thức sau :
a , f(x) = \(\left(2x-1\right)\left(x+3\right)\)
b , f(x)= \(\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c , f(x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
d , f (x) = \(4x^2-1\)
e , f(x)= \(\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
f , f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
g , f (x) = \(\frac{3}{2x-1}-\frac{1}{x-2}\)
h , f ( x) = \(\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)