cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
Cho tam giác ABC nhọn (AB < AB) nội tiếp (O;R) , kẻ đường cao AD của tam giác ABC, M và N là hình chiếu của D trên AB và AC. MN cắt BC tại P
1) C/m các tứ giác AMDN và BCMN nội tiếp.
2) C/m: PB.PC= PM.PN và OA vuôn góc với MN.
3) Tính diện tích hình viên phân giới hạn dây AB và cung nhỏ AB khi BA= R\(\sqrt{3}\)
4) Gọi H là giao điểm của PA với (O), I là tâm đường tròn ngoại tiếp tam giác BMN. C/m: H,D, I thẳng hàng.
cho tam giác ABC nhọn nội đường tròn tâm O phân giác A cắt (O) tại M phân giác ngoài A cắt (O) tại N AH vuông với BC kẻ đg kính ok , AH giao với (O) tại I
b,góc BMC = Góc ABC + ACB
c, M, O, N thẳng hàng
d, AM là phân giác của góc HOA
e,cung BI = cung CK
f, DB.DC=DM.DA
g,MC^2=MD.MA
Cho nửa đường tròn (O) đường kính AB = 2R.Điểm C cố định trên nửa đường tròn.Điểm M thuộc cung AC (M≠A,C).Hạ MH\(\perp\)AB tại H,tia MB cắt CA tại E,kẻ EI\(\perp\)AB tại I.Gọi K là giao điểm của AC và MH . Chứng minh rằng :
a) Tứ giác BHKC là tứ giác nội tiếp và AK.AC=AH.AB
b)AE.AC+BE.BM không phụ thuộc vị trí của điểm M trên cung AC.
c)Chứng minh đường tròn ngoại tiếp △MIC luôn đi qua 2 điểm cố định
Cho (O) và một dây cung AC cố định. Trên cung lớn AC lấy điểm B bất kì. Phân giác của góc ABC cắt cạnh AC tại M và cắt (O) tại K. Kẻ đường cao BH của tam giác ABC
a)Chứng minh OK⊥AC
b)Chứng minh BM là tia phân giác của góc OBH
c)Chứng minh KC2=KM.KB
Cho tam giác ABC có phân giác AM. Từ M kẻ MQ vuông góc với AB, kẻ MP vuông góc với AC ( Q thuốc AB, P thuộc AC), AM cắt QP ở H. CMR:
a) Tứ giác AQMP nội tiếp
b) Tam giác MQP cân
c) Tam giác HAP đồng dạng với HQM
CM giúp em câu b và c là đc
Cho đường tròn tâm (O) và điểm A nằm bên ngoài (O). Kẻ hai tiếp tuyến AM, AN với đường tròn (O) (M; N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB < AC; d không đi qua tâm O).
1. Chứng minh: Tứ giác AMON nội tiếp.
2. Tia OI cắt (O) tại K, NK cắt BC tại P. Gọi Q là giao điểm MP và OK. Cm tứ giác CQBN nội tiếp
Cho đường tròn đường kính BC cố định. Trên tia đối của BC lấy điểm A (khác B). Kẻ tiếp tuyến AM với đường tròn tâm (O), M là tiếp điểm. Qua A kẻ đường thẳng d vuông góc với AC, tia CM cắt d tại D.
a) Chứng minh tứ ADMB là tứ giác nội tiếp
b) Kẻ tia Mx sao cho MB là phân giác của góc AMx. Chứng minh AB.AC=AH.AO
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng