Ôn tập chương III

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phuong Nguyen dang

Giúp mk vs nha!!!

Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:18

Bài 3:

a/ \(\left(m+1\right)x-\left(x+2\right)=0\Leftrightarrow mx-2=0\Leftrightarrow mx=2\)

Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\2\ne0\end{matrix}\right.\) \(\Rightarrow m=0\)

b/ \(\Leftrightarrow\left(m^2+2m+1-4m-9\right)x=m+2\)

\(\Leftrightarrow\left(m^2-2m-8\right)x=m+2\)

Để pt vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m-8=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\) \(\Rightarrow m=4\)

c/ \(\Leftrightarrow\left(m^2-4\right)x=m^2-2m-8\)

Pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}m^2-4=0\\m^2-2m-8\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne4\\m\ne-2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:22

Bài 3:

d/ \(\Leftrightarrow\left(4m^2-1\right)x=2m+1\)

Pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-1=0\\2m+1\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=\frac{1}{2}\\m=-\frac{1}{2}\end{matrix}\right.\\m\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m=\frac{1}{2}\)

Bài 4:

a/ \(\Leftrightarrow\left(m^2-4\right)x=m^2-m-2\)

Để tập nghiệm của pt là R

\(\Rightarrow\left\{{}\begin{matrix}m^2-4=0\\m^2-m-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\\left\{{}\begin{matrix}m=1\\m=2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=2\)

b/ \(\Leftrightarrow\left(m^2-4\right)x=m-2\)

Để pt có tập nghiệm R

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\m-2=0\end{matrix}\right.\) \(\Rightarrow m=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:27

Bài 4:

c/ \(\Leftrightarrow\left(a+2b-1\right)x=-a+b-2\)

Để pt có tập nghiệm là R

\(\Leftrightarrow\left\{{}\begin{matrix}a+2b-1=0\\-a+b-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+2b=1\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=1\end{matrix}\right.\)

d/ \(\Leftrightarrow\left(m^2-9\right)x=m^2+m-6\)

Để pt có tập nghiệm R

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-9=0\\m^2+m-6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\\\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=-3\)

Bài 5:

a/ \(\Leftrightarrow\left(m^2-4\right)x=m^2+m-2\)

Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\m^2+m-2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=-2\)

Vậy để pt có nghiệm thì \(m\ne-2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:33

Bài 5:

b/ \(\Leftrightarrow\left(m^2-1\right)x=m^2-m\)

Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m^2-m\ne0\end{matrix}\right.\) \(\Rightarrow m=-1\)

Vậy để pt có nghiệm thì \(m\ne-1\)

c/ \(\Leftrightarrow\left(m-1\right)x=m^2-m\)

Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m-1=0\\m^2-m\ne0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại m thỏa mãn

Vậy pt đã cho luôn luôn có nghiệm

d/ \(\Leftrightarrow\left(m-1\right)x=m-m^2\)

Tương tự như trên, pt luôn luôn có nghiệm

Câu 6:

a/ \(x^2-\left(2-\sqrt{2}\right)x-2\sqrt{2}=0\)

\(\Delta=\left(2-\sqrt{2}\right)^2+8\sqrt{2}=6+4\sqrt{2}=\left(2+\sqrt{2}\right)^2\)

Phương trình có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\frac{2-\sqrt{2}+2+\sqrt{2}}{2}=2\\x_2=\frac{2-\sqrt{2}-2-\sqrt{2}}{2}=-\sqrt{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:39

Bài 6:

b/ \(\Delta=\left(2m+1\right)^2-4m\left(m+1\right)=1\)

Phương trình đã cho luôn có 2 nghiệm phân biệt:

\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)

c/ \(\Delta=\left(\sqrt{5}\left(\sqrt{2}+1\right)\right)^2-20\sqrt{2}=15-10\sqrt{2}=\left(\sqrt{10}-\sqrt{5}\right)^2\)

Phương trình luôn có 2 nghiệm phân biệt:

\(\left\{{}\begin{matrix}x_1=\frac{\sqrt{5}\left(\sqrt{2}+1\right)+\sqrt{10}-\sqrt{5}}{2}=\sqrt{10}\\x_2=\frac{\sqrt{5}\left(\sqrt{2}+1\right)-\sqrt{10}+\sqrt{5}}{2}=\sqrt{5}\end{matrix}\right.\)

d/ Ta có \(a=1\) ; \(b=-m^2+1\) ; \(c=m^2-2\)

\(\Rightarrow a+b+c=1-m^2+1+m^2-2=0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=1\\x_2=\frac{c}{a}=m^2-2\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:47

Bài 7:

a/ - Với \(m=1\) pt tương đương \(4=0\) (vô nghiệm)

- Với \(m\ne1\)

\(\Delta'=\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)=-4\left(m-1\right)\)

+ Nếu \(m>1\Rightarrow m-1>0\Rightarrow-4\left(m-1\right)< 0\) phương trình vô nghiệm

+ Nếu \(m< 1\Rightarrow-4\left(m-1\right)>0\Rightarrow\) pt đã cho có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\frac{-\left(m-1\right)+\sqrt{-4\left(m-1\right)}}{m-1}\\x_2=\frac{-\left(m-1\right)-\sqrt{-4\left(m-1\right)}}{m-1}\end{matrix}\right.\)

b/ Với \(m=0\Rightarrow x=\frac{1}{6}\)

- Với \(m\ne0\)

\(\Delta'=\left(m+3\right)^2-m\left(m+1\right)=5m+9\)

+ Nếu \(m< -\frac{9}{5}\Rightarrow\Delta'< 0\) pt vô nghiệm

+ Nếu \(m=-\frac{9}{5}\Rightarrow\Delta'=0\) pt có nghiệm kép \(x=\frac{m+3}{m}=-\frac{2}{3}\)

+ Nếu \(m>-\frac{9}{5}\Rightarrow\Delta'>0\) pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\frac{m+3+\sqrt{5m+9}}{m}\\x_2=\frac{m+3-\sqrt{5m+9}}{m}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 22:54

Bài 7:

c/ Với \(m=0\Rightarrow x=\frac{3}{4}\)

Với \(m\ne0\):

\(\Delta'=\left(2-3m\right)^2-9m\left(m-1\right)=-3m+4\)

- Nếu \(m>\frac{4}{3}\Rightarrow\Delta'< 0\) pt vô nghiệm

- Nếu \(m=\frac{4}{3}\Rightarrow\Delta'=0\) pt có nghiệm kép \(x=\frac{3m-2}{3m}=\frac{1}{2}\)

- Nếu \(m< \frac{4}{3}\Rightarrow\Delta'>0\) pt có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{3m-2+\sqrt{-3m+4}}{3m}\\x_2=\frac{3m-2-\sqrt{-3m+4}}{3m}\end{matrix}\right.\)

d/ Với \(m=0\Rightarrow x=1\)

Với \(m=\frac{1}{2}\Rightarrow x=4\)

Với \(m\ne0\); \(m\ne\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}mx-2=0\\\left(2m-1\right)x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{m}\\x=-\frac{1}{2m-1}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 23:12

Bài 8:

a/ Để pt có 2 nghiệm pb

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta=\left(1-2m\right)^2-4m\left(m+4\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-20m+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m< \frac{1}{20}\end{matrix}\right.\)

b/ Để pt có 2 nghiệm phân biệt:

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-3\right)^2-m\left(m-2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-4m+9>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< \frac{9}{4}\end{matrix}\right.\)

c/ Phương trình đã cho luôn có 1 nghiệm \(x=2\)

Để pt có 2 nghiệm pb

\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\x=\frac{-2}{m-1}\ne2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m-1\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne0\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 23:19

Bài 8:

d/ Để pt có 2 nghiệm phân biệt:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1\ne0\\\frac{3}{m}\ne\frac{3}{m+1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)

Bài 9:

Do m và k là 2 nghiệm của pt đã cho nên thay chúng vào phương trình ta được:

\(\left\{{}\begin{matrix}m^2+m^2+k=0\\k^2+mk+k=0\end{matrix}\right.\)

Từ pt dưới \(\Rightarrow k\left(k+m+1\right)=0\Rightarrow\left[{}\begin{matrix}k=0\\k+m+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}k=0\\k=-m-1\end{matrix}\right.\)

- Với \(k=0\) thay vào pt trên: \(2m^2+0=0\Rightarrow m=0\)

- Với \(k=-m-1\) thay vào pt trên:

\(2m^2-m-1=0\Rightarrow\left[{}\begin{matrix}m=1\Rightarrow k=-2\\m=-\frac{1}{2}\Rightarrow k=-\frac{1}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 23:22

Bài 10:

\(a=1\) ; \(b=-2\left(m-1\right)\) ; \(c=m+1\)

a/ Để pt có nghiệm \(x=1\) \(\Rightarrow a+b+c=0\)

\(\Rightarrow1-2\left(m-1\right)+m+1=0\Rightarrow-m+4=0\Rightarrow m=4\)

Khi đó ta có \(x_2=\frac{c}{a}=\frac{m+1}{1}=5\)

b/ Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Rightarrow m+1< 0\Rightarrow m< -1\)

Khách vãng lai đã xóa
Phuong Nguyen dang
24 tháng 11 2019 lúc 22:05
https://i.imgur.com/DIEviuO.jpg
Khách vãng lai đã xóa

Các câu hỏi tương tự
Phuong Nguyen dang
Xem chi tiết
Phuong Nguyen dang
Xem chi tiết
Phuong Nguyen dang
Xem chi tiết
vi lê
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
vi lê
Xem chi tiết
Hanuman
Xem chi tiết
Ngọc Nhi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết