Ta có: \(Q=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
\(=2\)
Ta có: \(Q=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
\(=2\)
a, \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
b, \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Các bạn giúp mk vs, Mk cần gấp.
1. \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
2. \(\dfrac{\sqrt{3-2\sqrt{3}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
3.\(\sqrt{7+2\sqrt{6}}-\sqrt{\left(\sqrt{6-1}\right)^2}\)
4\(\sqrt{5-2\sqrt{6}}-\sqrt{5+\sqrt{24}}\)
5.\(\sqrt{4\sqrt{5+\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
6.\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
1. \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
2. \(\dfrac{\sqrt{3-2\sqrt{3}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
3.\(\sqrt{7+2\sqrt{6}}-\sqrt{\left(\sqrt{6}-1\right)^2}\)
4\(\sqrt{5-2\sqrt{6}}-\sqrt{5+\sqrt{24}}\)
5.\(\sqrt{4\sqrt{5+\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
6.\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Rút gọn các biểu thức
a) \(\sqrt{\left(2-\sqrt{3}\right)}^2\) + \(\sqrt{4-2\sqrt{3}}\)
b) \(\sqrt{15-6\sqrt{6}}\) + \(\sqrt{33-12\sqrt{6}}\)
c) \(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\) + \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
d)\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}\) + \(\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
Rut gon bieu thuc:
a) (2-\(\sqrt{3}\))\(\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
b) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
c) \(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}-\sqrt{3-2\sqrt{2}}\)
Rút gọn :
\(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(C=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
Bài 1 Thực hiện các phép tính sau:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
f) 2\(\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}\)
Thực hiện phép tính
a) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b) \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\)
c) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
e) \(\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}+2\sqrt{6}\)
Rút gọn các biểu thức:
a) A=\(\frac{30}{\sqrt{6}+1}+\frac{2}{\sqrt{6}-2}-\frac{6}{3-\sqrt{6}}\)
b) B=\(\sqrt{17-6\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
c) C=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
d) D=\(\sqrt{a+1-2\sqrt{a}}-\sqrt{a+16-8\sqrt{a}}\) với \(1\le a\le16\)
e) E=\(\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
f) F=\(\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}\)
g) G=\(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)