\(\lim\limits_{x\rightarrow2}\frac{2\left(\sqrt{x+2}-2\right)}{x^2+x-6}=\lim\limits_{x\rightarrow2}\frac{2\left(\sqrt{x+2}-2\right)\left(\sqrt{x+2}+2\right)}{\left(x-2\right)\left(x+3\right)\left(\sqrt{x+2}+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)\left(\sqrt{x+2}+2\right)}=\lim\limits_{x\rightarrow2}\frac{2}{\left(x+3\right)\left(\sqrt{x+2}+2\right)}=\frac{2}{5.4}=\frac{1}{10}\)