Bài 1. Cho a,b>0 tm a+b=1
Tìm Min P= \(\dfrac{2}{ab}+\dfrac{1}{a^2+b^2}+\dfrac{a^4+b^4}{2}\)
Bài 2, Cho x,y>0 tm x+y = 4/3
Tìm Min A= \(\dfrac{2}{x^2+y^2}+\dfrac{2}{xy}+5xy\)
Bài 3. Cho a,b,c là 3 cạnh tam giác. Tìm Min P= \(\dfrac{4a}{b+c-a}+\dfrac{9b}{a+c-b}+\dfrac{16c}{a+b-c}\)
Bài 4. Cho a,b,c >1. Tìm Min P= \(\dfrac{a}{\sqrt{b}-1}+\dfrac{b}{\sqrt{c}-1}+\dfrac{c}{\sqrt{a}-1}\)
@Akai Haruma Chị giúp e bài này đc k chị, tại e sắp thi rồi chị!! E cảm ơn
Cho \(a;b;c\ge\dfrac{4}{3}\) thỏa mãn \(a+b+c=6\)
Tìm min: \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)
Rút gọn các biểu thức sau :
1, \(\sqrt{4\left(a-4\right)^2}\) ( với a \(\ge\) 4 )
2, \(\sqrt{9\left(b-5\right)^2}\) ( với b < 5 )
Giúp mình vs mình cần gấp ạ , cảm ơn nhìuuu 🌷
Với a , b là các số thực > 1
Tìm MIN
M = (\(\frac{\left(a^3+b^3\right)-\left(a^2+b^2\right)}{\left(a-1\right)\left(b-1\right)}\)
Đề bài : trục căn thức ở mẫu
1) A= 3/3 căng 2 + 1
B= 1/3 căng 4 + 3 căng 2 + 1
mng giúp em với ạ , cảm ơn ạ
Cho a,b,c>0 tm: \(a+b+c\le \frac{3}{2}\)
Min P=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
Cho a;b;c>0 thỏa mãn : a+b+c=1
Tìm min:
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
cho a,b là 2 số thực dương sao cho (\(\sqrt{a}\)+1)(\(\sqrt{b}\)+1)≥4
tìm min P= \(\dfrac{a^2}{b}\)+ \(\dfrac{b^2}{a}\)