Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thị Tú Linh

Giúp mình câu 1,3,4 phần tự luận với ạ. Mình cảm ơn

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 23:37

1.

\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)

\(\Rightarrow sin\alpha=-\sqrt{1-cos^2a}=-\dfrac{12}{13}\)

\(\Rightarrow tan2a=\dfrac{sin2a}{cos2a}=\dfrac{2sina.cosa}{cos^2a-sin^2a}=\dfrac{2.\left(-\dfrac{12}{13}\right).\left(\dfrac{5}{13}\right)}{\left(\dfrac{5}{13}\right)^2-\left(-\dfrac{12}{13}\right)^2}=...\)

3.

\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{4}{4y}\ge\dfrac{\left(1+2\right)^2}{x+4y}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(\left(x;y\right)=\left(2;1\right)\)

 

Nguyễn Việt Lâm
5 tháng 3 2022 lúc 0:15

4.

Lưu ý: hàm \(sinx\) đồng biến khi \(0< x< 90^0\) và nghịch biến khi \(90^0< x< 180^0\), hàm cos nghịch biến khi \(0< x< 90^0\)

Đường tròn (C) tâm \(I\left(1;1\right)\) bán kính \(R=4\) , \(\overrightarrow{IA}=\left(1;-1\right)\Rightarrow IA=\sqrt{2}\)

Theo công thức diện tích tam giác:

\(S_{IMN}=\dfrac{1}{2}IM.IN.sin\widehat{MIN}=\dfrac{1}{2}R^2.sin\widehat{MIN}=8.sin\widehat{MIN}\)

\(\Rightarrow S_{IMN}\) đạt max khi \(sin\widehat{MIN}\) đạt max

Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH\le IA\) theo định lý đường xiên - đường vuông góc

\(\Rightarrow cos\widehat{HIM}=\dfrac{IH}{IM}\le\dfrac{IA}{IM}=\dfrac{\sqrt{2}}{4}\Rightarrow\widehat{HIM}>69^0\)

\(\Rightarrow\widehat{MIN}=2\widehat{HIM}>120^0>90^0\)

\(\Rightarrow sin\widehat{MIN}\) đạt max khi \(\widehat{MIN}\) đạt min

\(\Rightarrow\widehat{HIM}=\dfrac{1}{2}\widehat{MIN}\) đạt min

\(\Rightarrow cos\widehat{HIM}\) đạt max

\(\Rightarrow cos\widehat{HIM}=\dfrac{\sqrt{2}}{4}\Leftrightarrow H\) trùng A

Hay đường thẳng MN vuông góc IA \(\Rightarrow\) MN nhận (1;-1) là 1 vtpt

Phương trình MN: \(1\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow x-y-2=0\)


Các câu hỏi tương tự
Đặng Thị Tú Linh
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Ánh Thuu
Xem chi tiết
Phạm Băng Băng
Xem chi tiết