Đặt \(\sqrt{x}=a\left(a>0;a\ne1\right)\), ta có:
\(A=\dfrac{a^4+a^2+1}{a^2+a+1}=\dfrac{a^4-a+a^2+a+1}{a^2+a+1}\)
\(=\dfrac{a\left(a^3-1\right)}{a^2+a+1}+\dfrac{a^2+a+1}{a^2+a+1}\)
\(=\dfrac{a\left(a-1\right)\left(a^2+a+1\right)}{a^2+a+1}+1\)
\(=a\left(a-1\right)+1=a^2-a+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{4}\)