ĐKXĐ :x\(\ge\)0;x\(\ne\)1;x\(\ne\)3
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{x+16}{\sqrt{x}+3}\)
b, x =(\(\sqrt{2}-1)^2\)
Thay x =(\(\sqrt{2}-1)^2\)thỏa mãn đk vào a có:
A=\(\dfrac{\left(\sqrt{2}-1\right)^2+16}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)
=\(\dfrac{2-2\sqrt{2}+1+16}{\sqrt{2}-1}\)
=\(\dfrac{19\sqrt{2}+19-4-2\sqrt{2}}{2-1}\)
=\(17\sqrt{2}+15\)
c, A=\(\dfrac{x+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\)
=\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)
Theo BĐT cosy ta có:
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\times\dfrac{25}{\sqrt{x}+3}}\)
\(\Rightarrow\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-\ge10-6\)
\(\Rightarrow A\ge4\)
\(\Rightarrow MinA=4\)
Dấu = xảy ra\(\Leftrightarrow\)\(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\)
\(\Leftrightarrow\sqrt{x}+3=5\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)