Bài 1:
ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{\left(x+2\right)\left(x-2\right)}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
b) Ta có: \(\left|x\right|=\dfrac{1}{2}\)
nên \(x\in\left\{\dfrac{1}{2};\dfrac{-1}{2}\right\}\)
Thay \(x=\dfrac{1}{2}\) vào biểu thức \(A=\dfrac{-1}{x-2}\), ta được:
\(A=-1:\left(\dfrac{1}{2}-2\right)=-1:\dfrac{-3}{2}=\dfrac{-1\cdot2}{-3}=\dfrac{2}{3}\)
Thay \(x=-\dfrac{1}{2}\) vào biểu thức \(A=\dfrac{-1}{x-2}\), ta được:
\(A=-1:\left(-\dfrac{1}{2}-2\right)=-1:\dfrac{-5}{2}=1\cdot\dfrac{2}{5}=\dfrac{2}{5}\)
Vậy: Khi \(\left|x\right|=\dfrac{1}{2}\) thì \(A\in\left\{\dfrac{2}{3};\dfrac{2}{5}\right\}\)
c) Để A<0 thì \(\dfrac{-1}{x-2}< 0\)
\(\Leftrightarrow x-2>0\)
hay x>2
Kết hợp ĐKXĐ, ta được: x>2
Vậy: Để A<0 thì x>2