\(ĐK:x\ge2,26\)
\(\Leftrightarrow2\sqrt{81-7x^3}=18-x^3\)
\(\Leftrightarrow4.\left(81-7x^3\right)=\left(18-x^3\right)^2\)
\(\Leftrightarrow324-28x^3=324-36x^3+x^5\)
\(\Leftrightarrow8x^3-x^5=0\)
\(\Leftrightarrow x^3\left(8-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^3=0\\8-x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^3=0\\x^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\sqrt{2}\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)
ĐK: \(x^3\le\frac{81}{7}\)
\(x^3+2\sqrt{81-7x^3}=18\)
⇔ \(7x^3+2.7\sqrt{81-7x^3}=126\)
⇔ \(81-7x^3-2.7\sqrt{81-7x^3}+49=4\)
⇔ \(\left(\sqrt{81-7x^3}-7\right)^2=4\)
⇔ \(\left[{}\begin{matrix}\sqrt{81-7x^3}-7=2\\\sqrt{81-7x^3}-7=-2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) (t/m ĐK)
Vậy ...